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We investigate the role of quantum coherence in tunneling conductance, where quantum criticality turns out
to suppress Fano resonance. Based on the nonequilibrium noncrossing approximation, we show that the linear
tunneling conductance exhibits weak Fano line shape with sharp cusp at zero energy in the multichannel
Kondo effect resulting from incoherence associated with quantum criticality of impurity dynamics. In particu-
lar, shift of the peak position in the Fano resonance is predicted not to occur for the multichannel Kondo effect
distinguished from the Fermi-liquid theory in the single-channel Kondo effect.
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I. INTRODUCTION

Recently, scanning tunneling microscopy �STM� has been
utilized extensively to probe the electronic structure of ma-
terials with atomic scale spatial resolution. It was found that
formation of the Kondo resonance gives rise to an asymmet-
ric line shape in the tunneling conductance through the STM
tip close to a magnetic adatom on a metallic surface,1–3 the
origin of which is an effect of interference between the direct
tip-host tunneling and indirect tip-adatom-host one that re-
sembles the so-called Fano resonance.4 This Fano-Kondo ef-
fect has been discussed in detail.5–7 A similar Fano-Kondo
effect was also investigated in the electron transport through
a quantum dot embedded in a closed Aharonov-Bohm
interferometer.8,9

The mechanism of Fano resonance implies that quantum
coherence of impurity dynamics plays an important role for
the line shape, where the coherence time scale is estimated as
�1 /TK with the Kondo temperature TK. An interesting ques-
tion is what happens in the Fano line shape if impurity dy-
namics becomes incoherent. Such a situation is realized in
the multichannel Kondo system, where screening of a local
moment by conduction electrons is overcompensated to drive
the local Fermi-liquid state into a non-Fermi-liquid critical
state first suggested by Nozieres and Blandin in the multi-
channel Kondo model.10

Multichannel Kondo impurity systems have been studied
both experimentally and theoretically with considerable in-
terests. Recently, the multichannel Kondo model was real-
ized artificially in quantum dots.11 The multichannel Kondo
effect was also claimed to occur in the quadrupolar Kondo
effect12 and in metal point contacts.13 In the theoretical re-
spect the multichannel Kondo model has been studied in a
variety of controlled techniques.14 The conformal field
theory approach provides exact results of the non-Fermi-
liquid fixed point,15 and the noncrossing approximation
�NCA�, exact in the limit of large number of spin flavors and
charge channels, also gives practically sensible results,16,17

where universal power-law scaling is found in physical re-
sponses. Such power-law physics distinguishes the critical
non-Fermi-liquid state of the multichannel Kondo impurity
from the local Fermi-liquid state of the single-channel
Kondo impurity.

In this paper we study the Fano-Kondo effect by the tun-
neling current which flows from a single-channel STM tip to
a multichannel Kondo impurity host. Instead of the standard
Fano-Kondo resonance in the tunneling conductance, one
may expect different pronounced features due to interference
between the Fano resonance of the tunneling current and the
overcompensated screening of an impurity. Employing the
Keldysh nonequilibrium formalism,18,19 we derive the tun-
neling current and its conductance, where the tunneling cur-
rent solely depends on the Green’s function of an impurity.
We calculate the linear conductance profile analytically at
zero temperature based on the nonequilibrium NCA �Refs.
20 and 21� to obtain nonequilibrium Green’s functions of the
impurity. A power-law line shape in the tunneling conduc-
tance clearly shows the overscreening effect of an impurity.
Such an effect of incoherence leads the Fano resonance sup-
pressed and its asymmetric feature becomes considerably
weak. First of all, shift of the peak position in the Fano
resonance turns out not to occur in the multichannel Kondo
effect. These features are argued to be quite general distin-
guishing the non-Fermi-liquid phase from the Fermi-liquid
state in STM.

The plan of the present paper is as follows. In Sec. II we
present our model on an STM setup and derivation for the
tunneling current. We introduce the nonequilibrium NCA in
Sec. III. The conductance profile is analyzed at zero tempera-
ture in Sec. IV. Finally, the conclusion is presented in Sec. V.

II. TUNNELING CONDUCTANCE

A. Model

The system under consideration is shown schematically in
Fig. 1. It consists of a multichannel Kondo impurity host and
a single-channel STM tip placed directly above the host sur-
face. The multichannel Kondo impurity host is modeled by a
multichannel Anderson model in the slave-boson representa-
tion, which explicitly separates spin and channel
excitations.16 The STM tip couples separately to the impurity
and to the local conduction electrons of the host.

The Hamiltonian of the system takes the form

H = Hhost + Htip + Htunn, �1�
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Hhost = �
k,�,�

�kck��
† ck�� + � f�

�

f�
† f� + Vc �

k,�,�
f�

†b�̄ck�� + H.c.,

�2�

Htip = �
k,�

�Ek − eV�ak�
† ak�, �3�

Htunn = �
k,�,�

Va�Rt�f�
†b�̄ak� + H.c.

+ �
k,p,�,�

tc�k,R��ck��
† ap� + H.c., �4�

where ck��
† �ak�� creates host �tip� conduction electrons with

wave vector k, spin �, and channel �. The spin degeneracy is
N and the number of channels is M. In the slave-boson rep-
resentation the impurity creation operator is given by f�

†b�̄,
where f� is a fermion operator and b�̄ is a boson operator.
The fermion, f�

† , transforms according to SU�N� and creates
a local spin excitation, whereas the boson b�̄ transforms ac-
cording to the conjugate representation of SU�M� and anni-
hilates the channel quantum number of the “vacuum” state
produced by destroying a conduction electron.16,17 Complete-
ness of local states at the impurity site is represented by the
constraint ��f�

† f�+��̄b�̄
†b�̄=1 implemented as usual by intro-

ducing a Lagrange multiplier �. �k is the band dispersion of
conduction electrons in the host and � f is the energy level of
the Kondo impurity or the adatom at the host surface. Vc is
the hybridization parameter of the impurity and conduction
electrons in the host. For simplicity, Vc is assumed to be
constant. Ek is the band dispersion of tip-conduction elec-
trons and eV is an applied voltage bias between the tip and
host, which causes a weak electron current to flow between
them. We set the chemical potential of host conduction elec-
trons as our reference energy.

Couplings between the impurity and tip-conduction elec-
trons are represented by the hybridization parameter Va�Rt�,
where Rt is the tip position. It decays with a tip-to-impurity
separation7

Va�Rt� � Vae−��Rt�,

where � is an effective decay constant evaluated for states at
the Fermi level of the tip. In this paper we consider �Rt�

�1 /�, thus, Va�Rt� is modeled as a constant. Couplings be-
tween the tip and host conduction electrons are represented
by tc�k ,R��, where R� is a parallel distance between the tip
and impurity. For plane waves of conduction electrons, we
have

tc�k,R�� = tce
−ikR� .

When the tip is placed directly on top of the impurity, we
take t�k ,R��= tc.

The host Hamiltonian of Eq. �2� is the multichannel
Anderson model. In the case of M =N the impurity is com-
pletely screened to form the Kondo singlet resulting in the
local Fermi liquid. When the number of channels is larger
than the spin degeneracy �M �N�, the impurity is overcom-
pensated to give rise to a non-Fermi-liquid fixed point, which
exhibits universal power-law scaling.15–17 The universal scal-
ing property lies at the heart of quantum critical phenomena
in a number of materials. In this respect the present study can
be said to probe non-Fermi-liquid physics with STM. Unfor-
tunately, experimental realization of the multichannel Ander-
son model is still problematic. Recently, the two-channel
Kondo effect was realized artificially in quantum dots.11 If
the STM tip is applied to one of the leads, such non-Fermi-
liquid physics would be observed.

B. Tunneling current

The electron current flowing between the tip and host is
calculated within the Keldysh nonequilibrium formalism.18,19

The current from the tip to the host is given by the time
evolution of the occupation number for the electrons in the
tip

Jt→h�t� = e� dNt

dt
	 = −

ie

�

�H�t�,Nt�t�� , �5�

where Nt=�k�ak�
† ak�. One can express the current via non-

equilibrium Green’s functions

Jt→h�t� =
e

�
�

k,�,�
Va

�Gd��,ak�
	 �t,t�

+
e

�
�

k,p,�,�
tc
�Gcp��,ak�

	 �t,t� + H.c., �6�

where

Gd��,ak�
	 �t,t�� = i
ak�

† �t��d���t� , �7�

Gcp��,ak�
	 �t,t�� = i
ak�

† �t��cp���t� �8�

are lesser Green’s functions. Here we use the notation d��

=b�̄
†f�.
In the steady-state nonequilibrium Green’s functions de-

pend only on t− t�, and the Fourier transformation results in

FIG. 1. Scanning tunneling microscope �STM� device with a tip
placed closely to a Kondo impurity on the surface of a normal metal
�host�. In the host the impurity is hybridized with the metal conduc-
tion band through coupling Vc. The STM tip couples to the impurity
via hopping Va and to the local conduction electrons of the host via
hopping tc.
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Jt→h =
e

�
�
�,�
� d
Va

�Gd��,a�
	 �
�

+
e

�
�
�,�
� d
tc

�Gc��,a�
	 �
� + H.c., �9�

where Gd��,a�
	 �
� and Gc��,a�

	 �
� are the Fourier transforma-
tions of �kGd��,ak�

	 �t , t��, �k,pGcp��,ak�
	 �t , t��, respectively.

These nonequilibrium Green’s functions can be expressed
via the impurity Green’s function based on the equation of
motion method. Detailed calculations are presented in Ap-
pendix A.

In a similar way we can calculate a current flowing from
the host to the tip

Jh→t�t� = e� dNc

dt
	 = −

ie

�

�H�t�,Nc�t�� �10�

with Nc=�k��ck��
† ck��, where its detailed expression is given

by Eq. �A13� in Appendix A.
Calling Jh→t=−Jt→h in the steady state, the steady current

can be rewritten in the form

J = yJt→h − �1 − y�Jh→t, �11�

where y is an arbitrary number. We choose y such that the
term associated with the lesser Green’s function Gd��,d��

	 �
�
vanishes in the current formula from Eqs. �A12� and �A13�.
As a result, the electron current flowing between the tip and
the host reads

J =
e

�
�
��
� d


2�
Ttr�
��fa�
� − fc�
�� , �12�

where

Ttr�
� = T0 + QR Re Gd��,d��
R �
� + QI Im Gd��,d��

R �
� ,

�13�

and fa�c��
� is the Fermi-Dirac distribution function for tip
�host� conduction electrons. T0 and the coefficients QR�I� are
defined as

T0 =
4�

�1 + M��2 ,

QR = 8
1 − M�

�1 + M��3
��ac,

QI =
4

�1 + M��3

1

s
�a + �c��c + M�a�

−
4�1 − M��
�1 + M��4

1

s
��a − �c��M�a

+ c��1 + M�����M − 1� + 1� − ���

+ �a + �c��c − �a��

−
4�M − 1��
�1 + M��4

1

s
�c + �a��2c + �M� − 1�a� ,

where s=a+c���M −1�+1�. a�c�= �Va�c��2��a�c� is the

coupling strength between the impurity and tip �host� con-
duction electrons, and �=�2�tc�2�a�c is a measure of the
strength for the direct tunneling of conduction electrons be-
tween the tip and the host. �a�c� is the density of states for
noninteracting tip �host� conduction electrons at the Fermi
level.

The current formula in Eqs. �12� and �13� can be viewed
as a generalization of the Landauer-Büttiker formula to the
STM case,24,25 where Ttr�
� is the transmission probability
of the electron tunneling. The first term T0 of the transmis-
sion probability is the direct tunneling between the tip and
host, whereas the rest describe both indirect tunneling of
conduction electrons through the impurity and interference
between the two ways of electron tunneling. For the single-
channel case �M =1� the current formula in Eq. �12� is re-
duced to the well-known formula.9 In this case one may ex-
pect ��1 due to weakness of the tip coupling, hence, QR
never vanishes. For the multichannel case �=1 /M may hap-
pen when the channel number M is large. In this special case
QR=0 and interference contributions to the tunneling current
vanish. When �=0, i.e., there is no direct tunneling between
the tip and host, only the last term of the transmission prob-
ability in Eq. �13� appears, associated with the indirect tun-
neling of electrons between the tip and host through the im-
purity. This contribution is proportional to the density of
states �DOS� of the impurity. In the Kondo regime the impu-
rity is screened by conduction electrons of the host, and this
many-body effect must reflect in the DOS of the impurity,
hence, also in the tunneling current. In general, the transmis-
sion probability Ttr�
� is a superposition of the continuous
direct tunneling, indirect tunneling, and their interferences
giving rise to the Fano resonance.4

C. Discussion

The linear conductance is given by

G�
� =� �J�
�
�eV

�
eV=0

=
e

h
�
��

Ttr�
� �14�

at zero temperature. In general, the presence of the STM tip
could affect physical properties of the host with the Kondo
impurity. We will discuss this point in Sec. IV C. However, if
couplings of the tip to the host and impurity are weak, influ-
ences of the tip on the host and impurity are negligible,
where the impurity Green’s function can be evaluated with-
out couplings of the tip.

The impurity Green’s function can be written in the form
of the Dyson equation

Gd��,d��
R =

1


 − �d + ic − ��
�
, �15�

where ��
� is the retarded self-energy of the impurity
Green’s function. Considering real and imaginary parts of the
retarded self-energy, ��
�=�R�
�− i�I�
�, we obtain the
conductance profile in the form of

Ttr�
� = T0
���
� + q�
��2 + p�
�

�2�
� + 1
, �16�

where
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��
� =

 − �d − �R�
�

c + �I�
�
,

q�
� =
�1 + M��2

8�

QR

c + �I�
�
,

p�
� = 1 − q2�
� −
�1 + M��2

4�

QI

c + �I�
�
.

In the large frequency limit �R�
�→const and �I�
�→0
result, thus, we have Ttr�
�→T0, nothing but the background
profile of the conductance given by the direct tunneling prob-
ability between the tip and host.

The conductance profile in Eq. �16� can be viewed as a
generalized Fano form. In the noninteraction case of ��
�
=0 we have ��
�= �
−�d� /c, and p�
� and q�
� are con-
stants. In this case the Fano resonance results from the inter-
ference effect of a Lorentzian line shape of a discrete level
with a flat continuous background. The quantity q is the so-
called asymmetry parameter of the Fano line shape, whereas
the quantity p shifts positions of the maximum and minimum
in the Fano line shape. In Fig. 2 we present the conductance
profile for various parameters of q and p. It shows the Fano-
resonance line shape like the Lorentzian one, the width of
which is of order of c. For q=0 the profile line shape is
symmetric and its asymmetry becomes obvious as q in-
creases. The parameter p not only affects the maximum and
minimum positions of the Fano line shape, but also makes
the line-shape asymmetry clearer. One can expect that when
interactions are included, the conductance profile will be sig-
nificantly modified by the impurity self-energy as well as the
Fano resonance.

III. NONEQUILIBRIUM NONCROSSING
APPROXIMATION

The impurity Green’s function is evaluated within the
nonequilibrium NCA derived in a similar way as the equilib-
rium case.17 We start from an Anderson model in the slave-
boson representation

Seff =� � dtdt��
��

c��
† �t��Gc��,c��

0 �t,t���−1c���t��

+� dt�
�

f�
†�t��i�t − �d − i��f��t�

+� dt�
�

b�̄
†�t��i�t − i��b�̄�t� +� dti�

+� dtVcf�
†�t�b�̄�t�c���t� + H.c., �17�

where Gc��,c��
0 �t , t�� is the nonequilibrium single-site nonin-

teracting Green’s function for host conduction electrons and
time integration is performed along the Keldysh time con-
tour.

Integrating over conduction electron fields and introduc-
ing two bilocal fields � f�t , t�� and �b�t , t�� conjugate to
��f�

†�t�f��t�� and ��b�̄
†�t�b�̄�t��, respectively, the quartic term

in the effective action can be decoupled as follows:

Seff =� dt�
�

f�
†�t��i�t − �d − i��f��t�

+� dt�
�

b�̄
†�t��i�t − i��b�̄�t�

+� dti� −� � dtdt�� f�t�,t��
�

b�̄
†�t��b�̄�t�

−� � dtdt��b�t,t���
�

f�
†�t�f��t��

−� � dtdt��b�t,t��D0
−1�t,t��� f�t�,t� , �18�

where D0�t , t��= �Vc�2Gc��,c��
0 �t , t�� is the hybridization func-

tion.
The nonequilibrium NCA is the saddle-point approxima-

tion of the effective Keldysh action for the bilocal fields
� f�t , t�� and �b�t , t��. Introducing nonequilibrium fermionic
and bosonic Green’s functions as F�t , t��=−i
Tcf��t�f�

†�t��
and B�t , t��= i
Tcb�̄�t�b�̄

†�t��, we find the saddle-point equa-
tions for the fermionic and bosonic self-energies

� f�t,t�� = iMD0�t,t��B�t,t�� , �19�

�b�t,t�� = − iND0�t�,t�F�t,t�� , �20�

where the bilocal fields play the role of self-energies of the
fermionic and bosonic Green’s functions in the saddle-point
approximation given by

F−1�t,t�� = ��t,t���i�t − �d − i�� − � f�t,t�� , �21�

B−1�t,t�� = ��t,t���i�t − i�� − �b�t,t�� . �22�

Variation in the effective action with respect to the
Lagrange multiplier � gives rise to the constraint equation

N
f�
† f� + M
b�̄

†b�̄ = 1. �23�

-8 -4 0 4 8
0

1

2

3 q=0, p=0.5
q=0.5, p=0.5
q=1, p=0.5

T t
r(ω
)/T

0

(ω−ε
d
)/Γ

c

-8 -4 0 4 8

q=0.5, p=0
q=0.5, p=1
q=0.5, p=2

(ω−ε
d
)/Γ

c

FIG. 2. Conductance profile in the noninteraction case for vari-
ous parameters q and p as indicated in the figure.
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Using the Langreth’s rule of analytical continuation on the
real time axis,22,23 self-energy equations �19� and �20� are

� f
R�t,t�� = iM��D0

R�t,t�� + D0
	�t,t���BR�t,t��

+ D0
R�t,t��B	�t,t��� , �24�

�b
R�t,t�� = − iN�D0

	�t�,t�FR�t,t�� + D0
A�t�,t�F	�t,t��� ,

�25�

� f
	�t,t�� = iMD0

	�t,t��B	�t,t�� , �26�

�b
	�t,t�� = − iND0

��t�,t�F	�t,t�� . �27�

In the steady state the Fourier transformation for the Green’s
functions and their self-energies results in the following non-
equilibrium NCA equations:

� f
R�
� = Mc� d�

2�
B	��� + Mc� d�

�
fc�� − 
�BR��� ,

�28�

�b
R�
� = Nc� d�

2�
F	��� + Nc� d�

�
fc�� − 
�FR��� ,

�29�

� f
	�
� = − M� d�

�
fc�
 − ��B	��� , �30�

�b
	�
� = − N� d�

�
fc�
 − ��F	��� , �31�

where we have used explicit expressions for the hybridiza-
tion function

D0
R�
� = �Vc�2Gc��,c��

0R �
� = − ic, �32�

D0
	�
� = �Vc�2Gc��,c��

0	 �
� = 2icfc�
� . �33�

Note that the first terms in Eqs. �28� and �29� are just con-
stants. They can be absorbed into the Lagrange multiplier
using the constraint Eq. �23� and


f�
† f� = − i� d�

2�
F	��� , �34�


b�̄
†b�̄ = i� d�

2�
B	��� . �35�

We also used the fact that the Lagrange multiplier takes a
large value at the end of calculations.20,21

Dyson equations �21� and �22� can be also rewritten for
the retarded and lesser Green’s functions based on the Lan-
greth’s rule of analytical continuation,

FR�
� =
1


 − �d − i� − � f
R�
�

, �36�

BR�
� =
1


 − i� − �b
R�
�

, �37�

F	�
� = FR�
�� f
	�
�FA�
� , �38�

B	�
� = BR�
��b
	�
�BA�
� . �39�

Finally, the impurity Green’s function can be calculated
via the fermionic and bosonic Green’s functions

Gd��,d��
R �
� = i� d�

2�
�F	�
 + ��BA��� + FR�
 + ��B	���� .

�40�

Inserting this impurity Green’s function into the transmission
coefficient, we find the conductance profile measured in
STM.

The present derivation of nonequilibrium NCA equations
can be viewed as the path integral version for the projection
method20,21 completely equivalent with each other. In prac-
tice, such NCA equations are first solved for retarded Green’s
functions, and lesser Green’s functions are found with the
use of the retarded Green’s functions. In the next section we
will perform this work.

IV. FANO RESONANCE IN THE MULTICHANNEL
KONDO EFFECT

A. Zero-temperature solution of the noncrossing approximation
equations

In the linear-response regime the host-electron distribu-
tion function fc�
� is given by the standard Fermi-Dirac dis-
tribution function. Then, NCA equations �28� and �29� for
the retarded Green’s functions resemble the equilibrium
NCA equations solved exactly at zero temperature.26,27 Equa-
tions �28� and �29� can be written as the following differen-
tial equations at zero temperature:

d� f
R�
�

d

=

Mc

�
BR�
� , �41�

d�b
R�
�

d

=

Nc

�
FR�
� , �42�

with the boundary condition � f
R�−D�=�b

R�−D�=0, where D
is the band cutoff.

Solving these NCA equations, one can find

− �FR�
��−1 = TKhN/M�E0 − 


TK
,
TK

c
� , �43�

where the scaling function h��x� is given by

x = �
0

h��x,c�

dy
W�y�e��cy�

1 + W�y�e��cy�
. �44�

W�x� is the Lambert W function defined as28

x = W�x�exp�W�x�� .

TK=D�Mc /�D�M/Nexp���d /Nc� is identified with the
Kondo energy scale, below which the multichannel Kondo
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effect arises. E0 is the ground-state energy of the impurity,
below which spectral densities of the fermionic and bosonic
fields vanish at zero temperature.26,27 Therefore, FR�
� and
BR�
� are real functions below E0. As shown in this expres-
sion, there are two energy scales c and TK for the NCA
solution. A detailed derivation can be found in Appendix B.

Equation �43� shows that the NCA solution obeys the uni-
versal scaling form. Although the scaling function in Eq. �44�
should be computed numerically, its asymptotes in limits x
�1 and x�1 can be found analytically. For x�1, W�x�=x
−x2, thus, we obtain the asymptote

h��x,c� = ��� + 1�x�1/��+1��1 −
��c

� + 2
��� + 1�x�1/��+1�

+
2

2� + 1
��� + 1�x��/��+1�� . �45�

The leading term of the scaling function h��x ,c� shows the
power scaling with an exponent 1 / ��+1� implying that both
the retarded fermionic and bosonic Green’s functions exhibit
power-law physics near the threshold energy E0. This corre-
sponds to the overcompensated regime, where the impurity
spin is overscreened by multichannel conduction
electrons.15–17 In the opposite limit x�1, we obtain
h��x ,c�=x leading the fermionic Green’s function to behave
like 1 /
. This corresponds to the free moment regime, where
the impurity spin is weakly bound to screening clouds.

In Fig. 3 we plot the scaling function h��x ,c�. This NCA
solution �Eqs. �B6� and �43�� may be viewed as the complete
solution of the NCA equations at zero temperature for all
energy scales below the high-energy cutoff. It shows that the
scaling function h��x ,c� crosses from the power scaling re-
gime to the linear behavior as x increases from zero. The
scaling function h��x ,c�� obeys the power law up to x�1,
where c� is identified with a “crossover” value. On the other
hand, the power law of the scaling function is valid only for
x�1 when c�c�. This property implies that there is a char-
acteristic value of �TK /c�� leading the power scaling to per-
sist until energies comparable to TK. In the conventional case
of TK /c�1 the power scaling holds only for energies much
below TK. In the scaling regime FR�
����

−E0� /TK�M/�N+M� and BR�
����
−E0� /TK�N/�N+M� result ob-

tained previously.26,27 Although such power-law scaling fails
to describe Fermi liquid in T	TK for the single-channel
case, it is the underlying physics of the overcompensated
screening impurity in the multichannel case as shown by the
conformal field theory.15

The lesser self-energies obey the following differential
equations:

d� f
	�
�
d


=
Mc

�
B	�
� , �46�

d�b
	�
�
d


=
Nc

�
F	�
� �47�

at zero temperature. In the scaling regime the lesser Green’s
functions also display the same power scaling as the retarded
ones given by26,27

F	�
� = iA
1

Y f�
�
, �48�

B	�
� = − iA
1

Yb�
�
, �49�

with A=2� / �N+M�. See Appendix B. Based on Eq. �43�
with Eq. �B6� and Eqs. �48� and �49�, we find the final ex-
pression for the impurity Green’s function from Eq. �40� in
the scaling regime,

Gd��,d��
R �
� = Gd��,d��

R �0� + �Gd��,d���
� ,

Gd��,d��
R �0� =

1

N + M

�

c
� 1

M
−

N + M

N
nf

−
�

N + M
cot� �M

N + M
� − i

�

N + M
� ,

�Gd��,d���
� = i
4�

�N + M�c
sin� �M

N + M
�

�� M

2N + M
B� 2N

N + M
,

M

N + M
�

��−
N + M

M




TK
�N/N+M

+
�TK

�N + 2M�c
B� N

N + M
,

2M

N + M
�

��N + M

M




TK
�M/N+M� , �50�

where B�x ,y� is the beta function,29 and nf = 
f�
† f�.

The impurity Green’s function exhibits two power scal-
ings with N / �M +N� and M / �N+M�. In the overcompensa-
tion case �M �N� the power N / �N+M� scaling is dominant
for 
	TNCA, where TNCA is the crossover energy when the
dominant scaling behavior of the impurity Green’s function
crosses from one power to another given by

-15 -10 -5 0 5 10
-10

0

10
c=0.01
c=10

lo
g 2
(h

α[
x,
c]
)

log2(x)

FIG. 3. �Color online� Scaling function h��x ,c� with �=0.5 and
various parameters c. The two asymptotes ���+1�x�1/��+1� and x are
shown as the solid lines.
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TNCA = TK
M

N + M�M�N + 2M�c

�2N + M��TK

B� 2N

N + M
,

M

N + M
�

B� N

N + M
,

2M

N + M
� cos� �M

N + M
��

N+M/M−N

. �51�

B. Conductance profile within the noncrossing approximation

The impurity Green’s function Eq. �50� is nonanalytic at

=0 exhibiting an asymmetric and sharp cusp with power-
law scaling around 
=0. These non-Fermi-liquid features
are reflected on the conductance profile in Eq. �16�. For com-
parison, we also calculate the conductance profile in the
Fermi-liquid phase given by the following self-energy:30

�FL�
� = − c� 


TK
+ i

1

2
� 


TK
�2� . �52�

In Fig. 4 we plot conductance profiles in the symmetric
case, i.e., �d=−Re ��0�, within the NCA and Fermi-liquid
theory for various values of �. It shows that the conductance
profile of the overcompensation multichannel Kondo model
shows a sharp cusp with power-law scaling at 
=0 as ex-
pected. This feature is completely distinguished from the
Fermi-liquid theory result, where the conductance profile ex-
hibits the narrow Fano-Kondo resonance, the width of which
is on the order of TK. Note that the frequency in the x axis is
scaled with TK in Fig. 4, which is much smaller than the
energy scale c in the noninteraction case �Fig. 2�.

In the case of �=1 /M the asymmetry parameter q�
�
vanishes; thus, interference contributions to the conductance
disappear. As we can see in Fig. 4, the Fermi-liquid conduc-
tance profile is symmetric and exhibits only the Kondo reso-
nance at zero frequency. On the other hand, the asymmetry
parameter q�
� is finite for ��1 /M, and the Fano resonance
shifts the peak position away from zero, giving rise to an
asymmetric feature in the conductance profile within the
Fermi-liquid theory. Note that the asymmetry is more pro-
nounced for larger �.

In the multichannel case the conductance profile still ex-
hibits an asymmetric feature even when �=1 /M. However,
this asymmetry is not due to the Fano resonance but due to
the non-Fermi-liquid feature in the density of states of the
overscreened impurity. Although interference contributions
to the conductance are finite for ��1 /M, they cannot shift
the peak position away from zero in the multichannel con-
ductance as in the Fermi-liquid theory, the hallmark of non-
Fermi-liquid physics measured in STM. The conductance
profile still exhibits the sharp cusp at 
=0. This asymmetry
is due to both interference contributions and non-Fermi-
liquid properties of the overscreened impurity. However, in-
terference contributions are so weak that the Fano resonance
is suppressed. This indicates dominance of the non-Fermi-
liquid overcompensation over the Fano resonance. In the
multichannel case the conductance profile shows weak de-
pendence on �, thus, the strength of the tip coupling is not
essential to detect the non-Fermi-liquid feature in the tunnel-
ing conductance, as far as it does not vanish.

C. Physical origin for suppression of the Fano resonance

In the Fermi-liquid phase one can see ��
��
 and q�
�,
p�
��const as 
→0 in the tunneling conductance �Eq.
�16�� from Eq. �52�, giving rise to the Fano resonance away
from 
=0. This originates from quantum coherence of im-
purity dynamics, which maintains �R�
��
 and �I�
�
�
2 as 
→0. In the multichannel overcompensation scal-
ing regime �R�
���I�
���
�N/�N+M� results when 
→0,
which leads ��
��1 and the asymmetry factor q�
�
��
�−N/�N+M�, p�
���
�−N/�N+M�. As a consequence we find
Ttr�
���
�−2N/�N+M� in 
→0. The conductance profile al-
ways exhibits its peak at 
=0 that indicates the peak posi-
tion does not shift unlike the Fermi-liquid theory. This can be
interpreted as the fact that quantum coherence of impurity
dynamics is lost in the multichannel scaling regime, hence,
suppressing the Fano resonance.

For comparison we also calculate the conductance profile
in a marginal Fermi-liquid phase given by the following self-
energy ansatz:31

FIG. 4. Conductance profile calculated within the NCA �the
solid lines�, the marginal Fermi-liquid theory �the dashed lines�, and
the Fermi-liquid theory �the dotted lines� for various values of �.
Other parameters are M =6, N=2, c=1, a=0.01, TK=0.01, and
nf =0.8.
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�MFL�
� = c� 


TK
log

�
�
TK

− i
�

2

�
�
TK
� . �53�

The marginal Fermi-liquid phase can be considered as an
intermediate case which lies between the Fermi-liquid phase
and multichannel overcompensation phase, where the impu-
rity dynamics maintains weak quantum coherence. In Fig. 4
we also plot the conductance profile in the marginal Fermi-
liquid phase for various values of �. It shows that the con-
ductance profile of the marginal Fermi-liquid theory exhibits
a narrow resonance nearby 
=0. It resembles the conduc-
tance profile of the Fermi-liquid theory except for the posi-
tion of the Fano resonance which is very close to 
=0. The
weak quantum coherence in the marginal Fermi-liquid phase
can maintain the Fano resonance; however, weakness of its
quantum coherence cannot significantly shift the peak posi-
tion of the Fano resonance away from zero in comparison
with the Fermi-liquid phase. This feature implies the impor-
tant role of quantum coherence of impurity dynamics in the
mechanism of Fano resonance. When the impurity dynamics
becomes incoherent, the Fano resonance is suppressed.

D. Effect of the tip-host and the tip-impurity coupling on the
M-channel Kondo impurity system

As mentioned in Sec. II C, the impurity Green’s function
is evaluated without the tip coupling in the conductance pro-
file of Eq. �16�. In general, the presence of the tip could
affect physical properties of the host with the Kondo impu-
rity. In this subsection we discuss the effects of the tip-host
and the tip-impurity coupling on the M-channel Kondo im-
purity system of the host and impurity. Although such tip
couplings break the SU�M� symmetry in principle, we argue
that the overcompensation Kondo effect still occurs for weak
tip-impurity couplings with finite tip-host couplings.

1. Effect of the tip-host coupling

First, we consider the effect of the tip-host coupling only,
where the tip-impurity coupling is neglected. We take the
following unitary transformation for conduction electron
fields ck�� and bosonic fields b�:

ck�� = �
��

U���c̃k���, �54�

b� = �
��

U���
† b̃��, �55�

where the M �M unitary matrix U is chosen to satisfy
c̃k�1=��ck�� /�M for diagonalization of the tip to host cou-
pling term. We rewrite the starting Hamiltonian Eq. �1� in the
above transformed basis and integrate over tip conduction-
electron fields. Then, we find

Seff =� d��
k��

c̃k��
† ������ − �k�c̃k�����

+ �
�

f�
†������ + � − � f�f����

+ �
�

b̃�̄
†������ + ��b̃�̄��� + Vc�

k��

f�
†���b̃�̄���c̃k����� + H.c.

+� d�d��M�tc�2 �
kk��

c̃k�1
† ���ga�� − ���c̃k��1���� ,

where ga��−��� is the local Green’s function for tip elec-
trons.

It is clear that the last term in the above effective action
breaks the SU�M� symmetry. Effectively, the conduction
channel c̃k�1 has an additional contribution �M�tc�2�a to its
normal dispersion, while other conduction channels have not.
Integrating over conduction electrons, we obtain

Seff =� d��
�

f�
†������ + � − � f�f����

+ �
�

b̃�̄
†������ + ��b̃�̄��� +� d�d���Vc�2 �56�

�
�

f�
†���b̃1�����

kk�

gkk�
c�1��� − ����b̃1

†����f�����

+� d�d���Vc�2 �
�,��1

f�
†���b̃����

���
kk�

gkk�
c �� − ����b̃�

†����f����� , �57�

where �gkk�
c�1���−����−1=−���−�k��kk�−M�tc�2ga��−��� is the

inverse of the electron propagator for the channel �=1 and
�gkk�

c ��−����−1=−���−�k��kk� is that for other M −1 channels.
This SU�M� symmetry breaking gives rise to anisotropic hy-
bridization couplings. In Appendix C we prove that c

�1�

= �Vc�2�kk��Im gkk�
c�1��0���c always happens. This indicates

that the channel �=1 couples to the impurity weaker than
�M −1� rest channels. As a consequence, the �M −1� channel
Kondo effect would occur. For large M, there is no differ-
ence in the physics of the overcompensated Kondo effect
between �M −1� channels and M channels.

2. Effect of the tip-impurity coupling

Now we consider the effect of the tip-impurity coupling
only, where the tip-host coupling is neglected. As performed
in the previous section, we take again the unitary transfor-
mation in Eqs. �54� and �55� for conduction electron fields
ck�� and bosonic fields b�, but now the M �M unitary matrix

U is chosen to satisfy b̃1=��b� /�M for diagonalization of
the tip-to-impurity coupling term. Then, we find the follow-
ing effective action:
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Seff =� d��
�

f�
†������ + � − � f�f���� + �

�

b̃�̄
†������ + ��b̃�̄���

+� d�d���
�

f�
†���b̃1�����Vc�2gc�� − ���

+ M�Va�2ga�� − ����b̃1
†����f�����

+� d�d���Vc�2 �
�,��1

f�
†���b̃����gc�� − ���b̃�

†����f����� ,

where gc���=�k,k�gkk�
c ���. This effective action shows that

the tip-impurity coupling breaks the SU�M� symmetry. The
effective hybridization coupling of the effective channel �
=1 is c+Ma, and it is always larger than the effective
hybridization coupling c of the �M −1� rest channels. As a
consequence, the single-channel Kondo effect would occur.
In this case the system restores the Fermi-liquid behaviors.

The NCA at zero temperature produces spurious non-Fermi-
liquid features26,27 and it is not adequate to describe the
physical properties of the system. In the calculation of the
conductance profile the Fermi-liquid self-energy in Eq. �52�
must be used and the Fano-Kondo resonance could appear.

3. Effect of both the tip-host and tip-impurity couplings

The two previous sections show that the tip-host coupling
allows the overcompensation Kondo effect, while the tip-
impurity coupling drives the system away from the critical
regime. Therefore, we are mainly interested in the case of a
finite tip-host coupling and small tip-impurity coupling. As
the case of finite tip-host couplings, we take the unitary
transformation for conduction electron fields ck�� and
bosonic fields b� in Eqs. �54� and �55� with c̃k�1
=��ck�� /�M. Proceeding in a similar way as the previous
sections, we find the effective action

Seff =� d��
�

f�
†������ + � − � f�f���� + �

�

b̃�̄
†������ + ��b̃�̄��� + �

�,��1
� d�d���Vc�2f�

†���b̃����gc�� − ���b̃�
†����f�����

+ �
�
� d�d����Vc�2f�

†���b̃1���gc�1��� − ���b̃1
†����f�����

+ f�
†���b0����M�Va�2ga�� − ��� + M2�Va�2�tc�2� d�1d�2ga�� − �1�gc�1���1 − �2�ga��2 − ����b0

†����f�����

+ MVcVa
�tcf�

†���b̃1���� d�1gc�1��� − �1�ga��1 − ���b0
†����f�����

+ MVc
�Vatc

�f�
†���b0���� d�1ga�� − �1�gc�1���1 − ���b̃1

†����f������ , �58�

where gc�1����=�k,k�gkk�
c�1����, and b0=��b� /�M. In general,

b0 is not necessarily equal to b̃1. We can rewrite b0=�1b̃1

+�2b̂, where b̂ is a linear combination of b̃2 , . . . , b̃M. The
coefficients �1 and �2 satisfy ��1�2+ ��2�2=1.

In the wide band limit of a constant density of states for
conduction electrons in both the tip and host, the effective
hybridization coupling terms of M channels in Eq. �58� can
be rewritten schematically as follows:

f�
† b̃1�c

�1� + ��1�2a
�0� + �1

�ac + �1ac
� �b̃1

†f� + f�
† b̂��2�2a

�0�b̂†f�

+ f�
† b̃1�2

�acb̂
†f� + f�

† b̂�2ac
� b̃1

†f� + �
��1

f�
† b̃�cb̃�

†f�, �59�

where

a
�0� = M�Va�2�Im ga�0�� + M2�Va�2�tc�2�Im�ga�0�2gc�1��0��� ,

ac = MVcVa
�tc�Im�ga�0�gc�1��0��� .

One can show that c
�1�=c / �1+M��, a

�0�=Ma / �1+M��,
and �ac�2=M2ca� / �1+M��2. The hybridization coupling
of �M −1� channels c is expected to dominate over those of

the channels b̃1 and b̂ if the following conditions are satis-
fied:

c � c
�1� + a

�0� + 2�ac� , �60�

c
�1� � a

�0�. �61�

These conditions are equivalent to c�Ma and �c� �3
+�8�a. When the hybridization couplings of �M −1� chan-
nels are relevant, the �M −1� channel Kondo effect would
occur. For large M, there is again no difference in the physics
of the overcompensated Kondo effect between �M −1� chan-
nels and M channels. However, we admit that this expecta-
tion does not have a firm ground because there exists com-
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plex mixing between channels. In our opinion this problem
should deserve further investigation.

Finally, we would like to mention that our demonstration
is expected to apply to the quantum dot realization for the
multichannel Kondo effect. If the STM tip lies in the lead,
we would be in weak a. Then, the suppression of the Fano
resonance is expected to observe.

V. CONCLUSION

In the present paper we predicted an interesting feature of
non-Fermi-liquid physics for the multichannel Kondo model
based on the STM experimental setting �Fig. 1�. Non-Fermi-
liquid physics often occurs at the quantum phase transition
and presents challenges in both theoretical and experimental
aspects, for instance, quantum criticality in heavy fermion
materials.32 Heavy fermion materials can be modeled by the
Anderson lattice model. One heavy fermion quantum critical
point in the Anderson lattice model was argued to be cap-
tured in the so-called dynamical mean-field theoretical
framework, more concretely, the two impurity Anderson
model with self-consistency, expected to result in essentially
similar physics with the multichannel impurity model.33 As
the first step to understand non-Fermi-liquid physics within
the STM detection, we employed the multichannel Anderson
model for one source of the non-Fermi-liquid state.

We derived the Landauer-Büttiker formula for the tunnel-
ing current from the STM tip to the multichannel impurity
host based on the Keldysh nonequilibrium formalism, where
the tunneling current is given by only the impurity Green’s
function. Employing the nonequilibrium NCA, we showed
that the impurity Green’s function exhibits universal power-
law scaling at low energies. As a consequence, the tunneling
conductance turns out to exhibit weak asymmetry but rather
sharp cusp at zero energy resulting from the power-law scal-
ing of the impurity Green’s function. The conventional Fano
resonance in Fermi liquids was shown to be suppressed. The
main prediction of our study is that the peak position in the
Fano-Kondo resonance does not shift, even increasing the tip
coupling constant, clearly distinguished from the Fermi-
liquid theory. Quantum coherence of the impurity dynamics
turns out to play an important role in the Fano mechanism.
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APPENDIX A: DERIVATION OF TUNNELING CURRENT

In Appendix A we derive the tunneling current formula in
Eqs. �12� and �13�. The lesser Green’s functions in Eq. �9�
are given by off-diagonal components of nonequilibrium
Green’s functions defined on the Keldysh time contour
which runs on the time axis from −� to � and goes back to
−�,18,19

Gd��,ak�
c �t,t�� = − i
Tcd���t�ak�

† �t�� , �A1�

Gcp��,ak�
c �t,t�� = − i
Tccp���t�ak�

† �t�� , �A2�

where Tc is the time ordering operator on the Keldysh time
contour. Differentiating the nonequilibrium Green’s func-
tions with respect to t� and resorting to the Heisenberg equa-
tion of motion

dak�
† �t��
dt�

= −
i

�
�H�t��,ak�

† �t��� ,

we obtain the following equations:

Gd��,ak�
c �t,t�� =� dt1VaGd��,d��

c �t,t1�gak
c �t1,t��

+ �
p,��
� dt1tcGd��,cp���

c �t,t1�gak
c �t1,t�� ,

�A3�

Gd��,cp���
c �t,t�� = ����� dt1VcGd��,d��

c �t,t1�gcp
c �t1,t��

+ �
k
� dt1tc

�Gd��,ak�
c �t,t1�gcp

c �t1,t�� ,

�A4�

where gak
c �t , t�� and gck

c �t , t�� are the nonequilibrium Green’s
functions for the isolated noninteracting conduction electrons
in the tip and host, respectively.

Inserting Eq. �A4� into Eq. �A3�, we obtain

Gd��,a�
c �t,t�� =� dt1VaGd��,d��

c �t,t1�ga
c�t1,t��

+� dt1� dt2tcVcGd��,d��
c �t,t1�gc

c�t1,t2�ga
c�t2,t��

+� dt1� dt2M�tc�2Gd��,a�
c �t,t1�gc

c�t1,t2�ga
c�t2,t�� ,

�A5�

where ga�c�
c �t , t��=�kga�c�k

c �t , t��. Using the Langreth’s rule of
analytical continuation on the real time axis,22,23 we can ob-
tain the retarded �advanced� and lesser �or greater� Green’s
functions from Eq. �A5�,

Gd��,a�
R/A = VaGd��,d��

R/A � ga
R/A + tcVcGd��,d��

R/A � gc
R/A � ga

R/A

+ M�tc�2Gd��,a�
R/A � gc

R/A � ga
R/A, �A6�

Gd��,a�
	 = Va�Gd��,d��

R � ga
	 + Gd��,d��

	 � ga
A�

+ tcVc�Gd��,d��
R � gc

R � ga
	 + Gd��,d��

R � gc
	 � ga

A

+ Gd��,d��
	 � gc

A � ga
A� + M�tc�2�Gd��,a�

R � gc
R � ga

	

+ Gd��,a�
R � gc

	 � ga
A + Gd��,a�

	 � gc
A � ga

A� , �A7�

where the superscripts R, A, and 	 denote the retarded, ad-
vanced, and lesser Green’s functions, respectively. For sim-
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plifying to write equations, we use the so-called � notation
defined as A�t��B�t��=�dt1A�t , t1�B�t1 , t��.

In the steady state Eqs. �A6� and �A7� are easily solved
making the Fourier transformation. As a result, we find

Gd��,a�
	 �
� = Gd��,d��

R �
�ZA�
��Vaga
	�
� + �tcVc + M�tc�2�

��gc
R�
�ga

	�
� + gc
	�
�ga

A�
���

+ Gd��,d��
	 �
�ZA�
��Vaga

A�
�

+ tcVcgc
A�
�ga

A�
�� , �A8�

where ZR/A�
�=1 / �1−M�tc�2gc
R/A�
�ga

R/A�
��.
Performing in a similar way, we can express the Green’s

function Gc�,a�
c �t , t��=�k,p,�Gck��,ap�

c �t , t�� with Gd�,a�
c �t , t��

=��Gd��,a�
c �t , t��. One can verify

Gc�,a�
	 �
� = MtcZ

R�
��gc
R�
�ga

	�
� + ga
	�
�ga

A�
���1

+ M�tc�2ZA�
�gc
A�
�ga

A�
�� + Gd�,a�
	 �
�ZR�
�

��Vc
�gc

R�
� + MtcVa
�gc

R�
�ga
R�
��

+ Gd�,a�
A �
�ZR�
��Vc

�gc
	�
� + �gc

R�
�ga
	�
�

+ gc
	�
�ga

A�
���MtcVa
� + M�tc�2ZA�
��Vc

�gc
A

+ MtcVa
�gc

A�
�ga
A�
���� . �A9�

Using Eqs. �A8� and �A9�, we can express the steady
current in Eq. �9� with the nonequilibrium Green’s functions
of the impurity. For simplicity, we will consider a flat density
of states for the tip and host conduction electrons in the wide
band limit given by

ga�c�
R/A �
� = � i��a�c�, �A10�

ga�c�
	 �
� = 2�i�a�c�fa�c��
� , �A11�

where �a�c� is the density of states for noninteracting tip
�host� conduction electrons at the Fermi level, and fa�c��
� is
its Fermi-Dirac distribution function. From Eqs. �9�, �A8�,
and �A9� we obtain

Jt→h =
e

�
�
��
� d


2�
�T0

2
�fa�
� − fc�
�� + Gd��,d��

	 �
�Tac1

+ Gd��,d��
R �
�2Tac1fc�
�

+ Gd��,d��
R �
�Tac2�fa�
� − fc�
�� + H.c.� , �A12�

where

T0 =
4�

�1 + M��2 ,

Tac1 = i��a

�Va + iVctc��c�2

�1 + M��2 ,

Tac2 = 2i��a
�1 − M���Va − iVctc��c�2

�1 + M��3 .

Here �=�2�tc�2�a�c is a measure of the strength for the direct
tunneling of conduction electrons between the tip and host.

In a similar way we can find a current flowing from the
host to the tip based on Eq. �10�,

Jh→t =
e

�
�
��
� d


2�
�T0

2
�fc�
� − fa�
�� + Gd��,d��

	 �
�Tca1

+ Gd��,d��
R �
�2Tca1fa�
� + Gd��,d��

R �
�Tca2�fc�
�

− fa�
�� + H.c.� +
e

�

�M − 1��
1 + M�

�
��
� d


2�
�Gd��,d��

	 �
�

���Tc + �Ta� + 2Gd��,d��
R �
���Tcfc�
� + �Tafa�
�

+ �T�fc�
� − fa�
��� + H.c.� , �A13�

where

�Ta = ia
1

1 + M�
,

�Tc = ic�1 +
1

1 + M�
� ,

�T = 2ic
1

�1 + M��2 + ia
M� − 1

�1 + M��2 .

Tca1 and Tca2 are just Tac1 and Tac2, changing indices a↔c
while the hopping tc is unchanged.

One can notice that the first term of the current Jh→t in Eq.
�A13� is just the current Jt→h in Eq. �A12� if the tip and host
are interchanged with each other. In the single-channel case
�M =1� the second term of the current Jh→t in Eq. �A13�
vanishes; thus, the current formula satisfies the symmetry
between the tip and host. However, in the multichannel case
�M �1� the symmetry is broken, because host conduction
electrons are multichannel, whereas tip-conduction electrons
are single channel.

APPENDIX B: SOLUTION FOR NCA EQUATIONS

In Appendix B we derive the NCA solution Eq. �43� with
Eq. �44� and Eqs. �48� and �49� from Eqs. �41� and �42� and
Eqs. �46� and �47�, respectively. Introducing inverse Green’s
functions,26,27

Y f�
� = − �Gf
R�
��−1, �B1�

Yb�
� = − �Gb
R�
��−1, �B2�

one can rewrite Eqs. �41� and �42� as

dY f�
�
d


= − 1 −
Mc

�
Yb

−1�
� , �B3�

dYb�
�
d


= − 1 −
Nc

�
Y f

−1�
� . �B4�

Then, we find the exact relation between Y f�
� and Yb�
�,

�

Mc
Yb exp� �

Mc
Yb� = � Y f

TK
�N/M

exp� �

Mc
Y f� , �B5�

where TK=D�Mc /�D�M/Nexp���d /Nc� is the Kondo en-
ergy scale.
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Solving Eq. �B5�, we obtain

Yb =
Mc

�
W�� Y f

TK
�N/M

exp��TK

Mc

Y f

TK
�� , �B6�

where W�x� is the Lambert W function given by x
=W�x�exp�W�x��.28 Inserting Yb in Eq. �B6� into Eq. �B3�,
we find the solution given by Eq. �43� with Eq. �44�.

Although NCA equations �46� and �47� for lesser self-
energies are identical to differential equations �41� and �42�
of retarded self-energies, Dyson equations �38� and �39� for
the lesser Green’s functions have a different structure. To-
gether with Dyson equations �38� and �39�, Eqs. �46� and
�47� can be rewritten as

d�F	�
�Y f
2�
��

d

=

Mc

�
B	�
� , �B7�

d�B	�
�Yb
2�
��

d

=

Nc

�
F	�
� �B8�

for frequency below E0. Then, we find Eqs. �48� and �49� as
their solution.

APPENDIX C: EFFECTIVE CHANNEL COUPLINGS

In this appendix we calculate the hybridization coupling
of the channel �=1 c�1� for the effective action of Eq. �57�.
We start from the following matrix identity:

�R + xU�−1 = R−1 −
x

1 + xS
F , �C1�

where Rij =Ri�ij is a diagonal matrix, Uij =1 for all i and j, x
is a number, S=�iRi

−1, and Fij =Ri
−1Rj

−1. Taking R=�kk��

−�k� and x=−M�tc�2ga�
�, we find the inversion of
�gkk�

c�1��
��−1,

gkk�
c�1��
� =

�kk�


 − �k
+

M�tc�2ga�
�
1 − M�tc�2ga�
�gc�
�

1


 − �k

1


 − �k�
,

�C2�

where gc�
�=�k1 / �
−�k�. Performing the summation of k,
k� we obtain

�
kk�

gkk�
c�1��
� = gc�
� +

M�tc�2ga�
�
1 − M�tc�2ga�
�gc�
�

�gc�
��2

=
gc�
�

1 − M�tc�2ga�
�gc�
�
. �C3�

In the wide band limit of a constant density of states for
conduction electrons in both the host and tip, Eq. �C3� results
in

c�1� =
c

1 + M�
. �C4�

It also shows c�1��c.
We prove the identity Eq. �C1�. Consider

�R + xU�−1 = �
n=0

�

�− 1�nxn�R−1U�nR−1. �C5�

We introduce the following identity:

�
n=1

�

�− 1�nxn�R−1U�nR−1 = − x��
n=0

�

�− 1�nxn�R−1U�n+1R−1� .

�C6�

Since the matrix R is diagonal, we can write its inverse as

�R−1�ij = R̃i�ij, where R̃i=1 /Ri. Calling �R−1U�ij = R̃i, where
elements in each row are identical, we find

��R−1U�n�ij = R̃iS
n−1 �C7�

with S=�iR̃i. Inserting Eq. �C7� into Eq. �C6�, we obtain

�
n=1

�

�− 1�nxn�R−1U�nR−1 = − x��
n=0

�

�− 1�nxnSnF� = −
x

1 + xS
F ,

�C8�

where Fij = R̃iR̃j. Resorting to Eqs. �C5� and �C8�, finally, we
reach Eq. �C1�.
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